Part Number Hot Search : 
78M05 AXLGS52F 16C55 R43391 T1300 BSS79BL 45027 T66N20Q
Product Description
Full Text Search
 

To Download FAN7033MP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ?2003 fairchild semiconductor corporation www.fairchildsemi.com rev. 1.0.0 features ?1.9w rms and 2.45w rms power per each channel into 4 ? load with less than 1% and 10% thd+n, respectively ? internally fixed gain : 21.6db(av=12) ? low quiescent current : typical 5.5ma@5v ? low shutdown current : typical 0.04 a@5v ? fully differential input, which immunes the common mode noise ? active low shutdown logic ? guaranteed stability under no load condition ? very small volume and thermally enhanced surface- mount 14mlp package(4mm*4mm) typical applications ? cellular phones ? notebook computer ? desktop computer description the FAN7033MP is a dual fully differential power amplifier in a thermally enhanced 14-pi n mlp package. when deliv- ering 1.9w of conti nuous rms power into 4 ? speaker at 5v supply, the FAN7033MP has less than 1% of thd+n over the entire audible frequency range, 20hz to 20khz. to save power consumption in the portable applications, the FAN7033MP provides shutdown f unction. setti ng the shut- down pin to ground level, the FAN7033MP falls into shut- down mode and consumes less than 4 a over all supply voltage range, 2.7v to 5.5v. additional components such as resistors for gain setting and boot strap capacitors are not needed, making the FAN7033MP well suited for portable sound systems and other hand- held sound equipments. tar- get applications include the cellular phones, notebook, desk- top computers, etc. 14mlp 1 bottom view FAN7033MP 2w stereo power amplifier with fixed gain internal block diagram rin- lin+ lin- rout+ rout- bypass lout+ lout- bias & control vdd gnd vdd/2 6 12 13 9 11 7 8 1 5 sd 14 10 pvdd1 3 pvdd2 90k ? 90k ? 90k ? 15k ? 15k ? 15k ? 15k ? 90k ? 90k ? 90k ? 90k ? 90k ? 15k ? 15k ? 15k ? 15k ? rin+ 4 2
FAN7033MP 2 pin assignments pin descriptions * pin8(gnd) and exposed pad are internally tied together. **for the best performance, vdd, pvdd1 and pvdd2 mu st be the same voltage level(stro ngly recommend). pin no symbol i/o decription 1 lout+ o left channel (+) output 2 lin- i left channel (-) input 3** pvdd2 i left channel power supply voltage 4 rin+ i right channel (+) input 5 lout- o left ch annel (-) output 6 lin+ i left channel (+) input 7 bypass o bypass capacitor connect 8* gnd - ground 9 rout- o right channel (-) output 10** pvdd1 i right channel power supply voltage 11** vdd i power su pply voltage 12 rin- i right channel (-) input 13 rout+ o right channel (+) output 14 sd i shutdown logic low sd =vdd: device enable sd =gnd: device shutdown bottom view 1 2 3 4 5 6 7 14 13 12 11 10 9 8 top view 1 2 3 4 5 6 7 14 13 12 11 10 9 8
FAN7033MP 3 absolute maximum ratings * rthja was derived using the jedec boards. operating rating parameter symbol value unit remark maximum supply vo ltage vddmax 6.0v v power dissipation p d internally limited w operating temperature t opg -40 ~ +85 c storage temperature t stg -65 ~ +150 c junction temperature t jmax 150 c thermal resistance (junction to ambient) rthja* 38 c/w multi-layer 145 single-layer esd rating (human body model) 2000 v esd rating (machine model) 300 v parameter symbol min. typ. max. unit power supply voltage v dd 2.7 - 5.5 v
FAN7033MP 4 electrical characteristics (v dd = 5.0v, ta = 25 c, unless otherwise specified) electrical characteristics (v dd = 3.3 v, ta = 25 c, unless otherwise specified) electrical characteristics (v dd = 2.7 v, ta = 25 c, unless otherwise specified) parameter symbol conditions min. typ. max. unit offset voltage v off rl=4 ?, av=21.6db -25 - 25 mv supply current i dd no input, no load - 5.5 10 ma shutdown current i sd sd = gnd - 0.04 4 a output power p o thd+n =1%, rl = 4 ? , f = 1khz - 1.9 - w thd+n =1%, rl = 8 ? , f = 1khz - 1.25 - w total harmonic distortion + noise thd+n p o = 1w, rl=4 ? , f = 20khz - 0.6 - % power supply rejection ratio psrr c byp = 1 f, r l = 4 ? , btl mode, ? vdd=500mvpp, f = 1khz 38 68 - db output noise voltage vn input=gnd, rl=4 ? , f=1khz - -120 - dbv parameter symbol conditions min. typ. max. unit offset voltage v off rl=4 ?, av=21.6db -25 - 25 mv supply current i dd no input, no load - 4.5 8 ma shutdown current i sd sd = gnd - 0.04 4 a output power p o thd+n =1%, rl = 4 ? , f = 1khz - 0.75 - w thd+n =1%, rl = 8 ? , f = 1khz - 0.53 - w total harmonic distortion + noise thd+n p o = 1w, rl=4 ? , f = 20khz - 0.75 - % power supply rejection ratio psrr c byp = 1 f, r l = 4 ? , btl mode, ? vdd=330mvpp, f = 1khz 38 68 - db output noise voltage vn input=gnd, rl=4 ? , f=1khz - -120 - dbv parameter symbol conditions min. typ. max. unit offset voltage v off rl=4 ?, av=21.6db -25 - 25 mv supply current i dd no input, no load - 4.1 7 ma shutdown current i sd sd = gnd - 0.04 4 a output power p o thd+n =1%, rl = 4 ? , f = 1khz - 0.45 - w thd+n =1%, rl = 8 ? , f = 1khz - 0.32 - w total harmonic distortion + noise thd+n p o = 0.5w, rl=4 ? , f = 20khz - 0.9 - % power supply rejection ratio psrr c byp = 1 f, r l = 4 ? , btl mode, ? vdd=270mvpp, f = 1khz 36 62 - db output noise voltage vn input=gnd, rl=4 ? , f=1khz - -120 - dbv
FAN7033MP 5 typical application circuits single-ended input right output rin- lin+ lin- rout+ rout- bypass lout+ lout- bias & control vdd gnd vdd/2 6 12 13 9 11 7 8 1 5 sd 14 10 pvdd1 3 pvdd2 90k ? 90k ? 90k ? 15k ? 15k ? 15k ? 15k ? 90k ? 90k ? 90k ? 90k ? 90k ? 15k ? 15k ? 15k ? 15k ? rin+ 4 2 c rinn c rinp 1uf 1uf right se input c linn c linp 1uf 1uf shutdown 220uf 1uf 100nf 100nf 4? 4? left se input left output
FAN7033MP 6 typical application circuits (continued) differential input rin- lin+ lin- rout+ rout- bypass lout+ lout- bias & control vdd gnd vdd/2 6 12 13 9 11 7 8 1 5 sd 14 10 pvdd1 3 pvdd2 90k ? 90k ? 90k ? 15k ? 15k ? 15k ? 15k ? 90k ? 90k ? 90k ? 90k ? 90k ? 15k ? 15k ? 15k ? 15k ? rin+ 4 2 c rinn c rinp 1uf 1uf right diff. input c linn c linp 1uf 1uf shutdown 220uf 1uf 100nf 100nf 4? 4? left diff. input right output left output
FAN7033MP 7 performance characterist ics : differential input figure 2. thd+n vs. output power figure 5. thd+n vs. output power figure 4. thd+n vs. output power figure 6. thd+n vs. output power figure 3. thd+n vs. output power 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=5v rl=4 ? av=21.6db 20khz 1khz 20hz output power [w] thd [%] figure 1. thd+n vs. output power 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=5v rl=8 ? av=21.6db 20khz 1khz 20hz thd [%] output power [w] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=5v rl=8 ? av=21.6db 20khz 1khz 20hz thd [%] output power [w] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 thd [%] output power [w] vdd=3.3v rl=4 ? av=21.6db 20khz 1khz 20hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 thd [%] output power [w] vdd=3.3v rl=4 ? av=21.6db 20khz 1khz 20hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 thd [%] output power [w] vdd=3.3v rl=8 ? av=21.6db 20khz 1khz 20hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 thd [%] output power [w] vdd=3.3v rl=8 ? av=21.6db 20khz 1khz 20hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 thd [%] output power [w] vdd=2.7v rl=4 ? av=21.6db 20khz 1khz 20hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 thd [%] output power [w] vdd=2.7v rl=4 ? av=21.6db 20khz 1khz 20hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 thd [%] output power [w] vdd=2.7v rl=8 ? av=21.6db 20khz 1khz 20hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 thd [%] output power [w] vdd=2.7v rl=8 ? av=21.6db 20khz 1khz 20hz
FAN7033MP 8 performance characteristics (continued) figure 7. thd+n vs. frequency f igure 8. thd+n vs. frequency figure 11. thd+n vs. frequency figure 10. thd+n vs. frequency figure 12. thd+n vs. frequency figure 9. thd+n vs. frequency 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] thd [%] vdd=5v output power =1w rl=4 ? 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] thd [%] vdd=5v output power =1w rl=8 ? 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] thd [%] vdd=3.3v output power =500mw rl=4 ? 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] thd [%] vdd=3.3v output power =500mw rl=4 ? 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] thd [%] vdd=3.3v output power =500mw rl=8 ? 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] thd [%] vdd=3.3v output power =500mw rl=8 ? 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] thd [%] vdd=2.7v output power =250mw rl=4 ? 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] thd [%] vdd=2.7v output power =250mw rl=4 ? 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] thd [%] vdd=2.7v output power =250mw rl=8 ? 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] thd [%] vdd=2.7v output power =250mw rl=8 ?
FAN7033MP 9 performance characteristics (continued) figure 13. psrr vs. frequency figure 14. psrr vs. frequency figure 17. psrr vs. frequency figure 16. psrr vs. frequency figure 18. psrr vs. frequency figure 15. psrr vs. frequency -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] psrr [db] vdd=5v+/-5% rl=4 ? -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] psrr [db] vdd=5v+/-5% rl=4 ? -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] psrr [db] vdd=5v+/-5% rl=8 ? -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] psrr [db] vdd=5v+/-5% rl=8 ? -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k vdd=3.3v+/-5% rl=4 ? psrr [db] frequency [hz] -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k vdd=3.3v+/-5% rl=4 ? psrr [db] frequency [hz] -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k psrr [db] vdd=3.3v+/-5% rl=8 ? frequency [hz] -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k psrr [db] vdd=3.3v+/-5% rl=8 ? frequency [hz] -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k vdd=2.7v+/-5% rl=4 ? psrr [db] frequency [hz] -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k vdd=2.7v+/-5% rl=4 ? psrr [db] frequency [hz] -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k vdd=2.7v+/-5% rl=8 ? psrr [db] frequency [hz] -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k vdd=2.7v+/-5% rl=8 ? psrr [db] frequency [hz]
FAN7033MP 10 performance characteristics (continued) figure 19. crosstalk vs. frequency f igure 20. crosstalk vs. frequency figure 23. power dissipa tion vs. output power figure 22. supply currrent vs. sd voltage figure 24. power dissipa tion vs. output power figure 21. supply curr ent vs. supply voltage -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] crosstalk [db] vdd=5v output power = 1w rl=8 ? left-to-right right-to-left -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] crosstalk [db] vdd=5v output power = 1w rl=8 ? left-to-right right-to-left -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k vdd=5v output power = 1w rl=4 ? left-to-right right-to-left crosstalk [db] frequency [hz] -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 50 100 200 500 1k 2k 5k 10k vdd=5v output power = 1w rl=4 ? left-to-right right-to-left crosstalk [db] frequency [hz] 012345 0.0 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m supply current [a] supply voltage [v] 012345 0.0 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m supply current [a] supply voltage [v] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 vdd=2.7v vdd=3.3v vdd=5v thd less than 1% rl=4 ? f=1khz power dissipation [w] output power [w] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 vdd=2.7v vdd=3.3v vdd=5v thd less than 1% rl=4 ? f=1khz power dissipation [w] output power [w] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 vdd=2.7v vdd=3.3v vdd=5v thd less than 1% rl=8 ? f=1khz power dissipation [w] output power [w] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 vdd=2.7v vdd=3.3v vdd=5v thd less than 1% rl=8 ? f=1khz power dissipation [w] output power [w] 012345 0.0 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m vdd=2.7v vdd=3.3v vdd=5v supply current [a] shutdown pin voltage [v] 012345 0.0 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m vdd=2.7v vdd=3.3v vdd=5v supply current [a] shutdown pin voltage [v]
FAN7033MP 11 performance characteristics (continued) figure 25. output power vs. supply voltage figur e 26. output power vs. supply voltage figure 29. output power vs. output load figure 28. output power vs. output load figure 30. outut noise voltage vs. frequency figure 27. output power vs. output load 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 10% thd+n 1% thd+n f=1khz rl=4 ? output power [w] supply voltage [v] 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 10% thd+n 1% thd+n f=1khz rl=4 ? output power [w] supply voltage [v] 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0.0 0.5 1.0 1.5 2.0 10% thd+n 1% thd+n f=1khz rl=8 ? output power [w] supply voltage [v] 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0.0 0.5 1.0 1.5 2.0 10% thd+n 1% thd+n f=1khz rl=8 ? output power [w] supply voltage [v] 0 8 16 24 32 40 48 56 64 0.0 0.5 1.0 1.5 2.0 vdd=5v f=1khz 10% thd+n 1% thd+n output power [w] rl-load resistance [ ? ] 0 8 16 24 32 40 48 56 64 0.0 0.5 1.0 1.5 2.0 vdd=5v f=1khz 10% thd+n 1% thd+n output power [w] rl-load resistance [ ? ] 0 8 16 24 32 40 48 56 64 0.0 0.2 0.4 0.6 0.8 1.0 1.2 vdd=3.3v f=1khz 10% thd+n 1% thd+n output power [w] rl-load resistance [ ? ] 0 8 16 24 32 40 48 56 64 0.0 0.2 0.4 0.6 0.8 1.0 1.2 vdd=3.3v f=1khz 10% thd+n 1% thd+n output power [w] rl-load resistance [ ? ] 0 8 16 24 32 40 48 56 64 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 vdd=2.7v f=1khz 10% thd+n 1% thd+n output power [w] rl-load resistance [ ? ] 0 8 16 24 32 40 48 56 64 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 vdd=2.7v f=1khz 10% thd+n 1% thd+n output power [w] rl-load resistance [ ? ] 100n 100u 200n 500n 1u 2u 5u 10u 20u 50u 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=5v rl=4 ? av=21.6db output noise voltage [uv] 100n 100u 200n 500n 1u 2u 5u 10u 20u 50u 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] vdd=5v rl=4 ? av=21.6db output noise voltage [uv]
FAN7033MP 12 performance characterist ics : single-ended input figure 33. thd+n vs. output power f igure 34. thd+n vs. output power figure 37. thd+n vs. output power figure 36. thd+n vs. output power figure 38. thd+n vs. output power figure 35. thd+n vs. output power 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=5v rl=4 ? av=21.6db 20khz 1khz 20hz output power [w] thd [%] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=5v rl=4 ? av=21.6db 20khz 1khz 20hz output power [w] thd [%] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=5v rl=8 ? av=21.6db 20khz 1khz 20hz output power [w] thd [%] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=5v rl=8 ? av=21.6db 20khz 1khz 20hz output power [w] thd [%] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=3.3v rl=4 ? av=21.6db 20khz 1khz 20hz output power [w] thd [%] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=3.3v rl=4 ? av=21.6db 20khz 1khz 20hz output power [w] thd [%] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=3.3v rl=8 ? av=21.6db 20khz 1khz 20hz thd [%] output power [w] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=3.3v rl=8 ? av=21.6db 20khz 1khz 20hz thd [%] output power [w] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=2.7v rl=4 ? av=21.6db 20khz 1khz 20hz thd [%] output power [w] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=2.7v rl=4 ? av=21.6db 20khz 1khz 20hz thd [%] output power [w] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=2.7v rl=8 ? av=21.6db 20khz 1khz 20hz thd [%] output power [w] 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 10m 3 20m 50m 100m 200m 500m 1 2 vdd=2.7v rl=8 ? av=21.6db 20khz 1khz 20hz thd [%] output power [w]
FAN7033MP 13 performance characteristics (continued) figure 39. thd+n vs. frequency figure 40. thd+n vs. frequency figure 43. thd+n vs. frequency figure 42. thd+n vs. frequency figure 44. thd+n vs. frequency figure 41. thd+n vs. frequency 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] thd [%] vdd=5v output power =1w rl=4 ? 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k frequency [hz] thd [%] vdd=5v output power =1w rl=4 ? 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k vdd=5v output power =1w rl=8 ? frequency [hz] thd [%] 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k vdd=5v output power =1w rl=8 ? frequency [hz] thd [%] 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k vdd=3.3v output power =500mw rl=4 ? frequency [hz] thd [%] 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k vdd=3.3v output power =500mw rl=4 ? frequency [hz] thd [%] 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k vdd=3.3v output power =500mw rl=8 ? frequency [hz] thd [%] 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k vdd=3.3v output power =500mw rl=8 ? frequency [hz] thd [%] 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k vdd=2.7v output power =250mw rl=4 ? frequency [hz] thd [%] 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k vdd=2.7v output power =250mw rl=4 ? frequency [hz] thd [%] 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k vdd=2.7v output power =250mw rl=8 ? frequency [hz] thd [%] 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 20 20k 50 100 200 500 1k 2k 5k 10k vdd=2.7v output power =250mw rl=8 ? frequency [hz] thd [%]
FAN7033MP 14 performance characteristics (continued) figure 45. power derating curve notes : - single layer(jesd51-3) : thermal vias : 0 board size : 76.2mm*114.3mm*1.57mm(jesd51-3) copper thickness : 2.0oz copper coverage : top layer : traces + metalization area(3.34mm*2.24mm) - multi layer(jesd51-7) : thermal vias : 6 board size : 76.2mm*114.3mm*1.6mm(jesd51-7) copper thickness : 2.0oz/1.0oz/1.0oz copper coverage : top layer : traces + metalization area(3.34mm*2.24mm) middle layers(power/ground planes) : 74.2mm*74.2mm - jesd51-3 : low effective thermal conductivity test board for leaded surface mount packages(single layer) - jesd51-7 : high effective thermal conductivity test board for leaded surface mount packages(multi layers) - jesd51-2 : integrated circuits thermal test method environmental conditions - natural convection(still air) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 25 50 75 100 125 150 ambient temperature [c] power dissipation [w] single layer multi layer
FAN7033MP 15 applications information functional description the FAN7033MP is a stereo power amplifier capable of delivering 1.9w continuous rms(root mean square) power into 4 ? load with 1% thd(total harmonic distortion). at 10% thd, the FAN7033MP can deliver above 2w into 4 ? load. the FAN7033MP has 5 supply input pins. three among them are used for positive supply and the rest of them is for the ground. three positive supply input pins : pin3(pvdd2), pin10(pvdd1) and pin11(vdd) must be tied together. to improve the cross-talk between can nels, these pins are not connected internally. therefore, these pins must be externally connect ed on the pcb. pin 8 and the exposed pa d are allocated to ground. thus, the exposed pad must be connected to the ground. the FAN7033MP is provided with differential inputs. these inputs increase the common-mode noise immunity. furthermore, differential configuration in the input section helps to decrease total harmonic distortion and pop noise that occurs when shutdown is released. when only si ngle input is available, the distortion performance is slightly degraded. to save the standby power consumption, the FAN7033MP provides shutdown function. putting pin14(sd) to be low, the chip falls into shutdown mode. at this mode, it consumes micro power at the room temperature of 25c and this power consumption is only due to the leakage curre nt of the chip. this leakage current is the strong func- tion of the temperature. thus at the high ambient temperat ure, the shutdown current s lightly increases. the logic threshold of shutdown pin lies nearby vdd/2. so, the logi c threshold level does not follow ttl logic level. thus, when the users want to control the chip according to the ttl logic level, some kinds of logic-level-changing circuit may be needed. operation of the amplifier figure 1 shows the configuration of the single channel bt l(bridge-tied load) power amplifier. to make the differ- ential input configuration, the FAN7033MP uses several re sistor networks as depicted in figure 1. for the input resistor, 15k ? is used. this resistor converts the input voltage signal to the current signal. the converted current signal flows to the feedback resistor. for FAN7033MP, the feedback resistance is six time s larger than input resis- tance. thus, the gain is 12(about 21.6db). for the 5v supply, the input signal has 0.83vpeak voltage swing makes 10vpp output swing. the exact gain formula is given by as shown in equation (1), for the single-ended input case, the gain is also preserved. however, to get the same output swing with the differential input case, the input swing must be double comparing with the differential input swing. pcb layout and supply regulation metal trace resistance between the btl output and the pa rasitic resistance of the power supply line both heavily figure 1. configuration of power amplifier inn 90k ? 90k ? 90k ? 15k ? 15k ? 15k ? 15k ? 90k ? inp c inn c inp outp outn amp1 amp2 vdd/2 outp outn ? 12 inp inn ? () = (1)
FAN7033MP 16 affect the output power. in order to obtain the maximum power depicted in the performance characteristics figures, outputs, power, and ground lines need wide metal trace. the parasitic resistance of the power line increases ripple noise and degrades the thd and psrr performance. to reduce such unwanted effect, a large capacitor must be connected between v dd pin and gnd pin as close as possible. to improve power supply regulation performance, use a capacitor with low esr. power supply bypassing selection of a proper power supply bypassing capacitor is critical to obtaining lower noise as well as higher power supply rejection. larger capa citors may help to increase immunity to the supply noise. however, considering eco- nomical design, attaching 10 f electrolytic capacitor or tantalum capacitor with 0.1 f ceramic capacitor as close as possible to the vdd pins are enough to get a good supply noise rejection. selection of input capacitor the input capacitors cinn and cinp block the dc voltage al so low frequency input sig nal. thus, these capacitors act as a high pass filter. when there are dc level differences between input source and the amplifier, these capac- itors block dc voltage and make easy connection. however, these capacitors limit the low frequency input signal. thus to cover the full audio frequency range, the values of these are very important. the input impedance and the capacitance of these capacitors stand for the low frequency characteristics and -3db frequency is where zin is the input equivalent impedance and c is the capacitance of the input capacitor. for FAN7033MP, the input has several resistors and these resistors determine the input impedance. in the normal condition, (-) input of the amplifier looks like a voltage source since the negative feedb ack topology makes (-) input virtually be the ac ground. thus, resistance between th e negative input of the amplifier and input pin is 15k ? . the resistance toward (+) inpu t is the summation of 15k ? and 90k ? . thus total input impedance is considering f l =20hz(the lowest frequency of the audio freqeuncy range), it is possible to get the capacitance value from equation(2) and (3) as follow: thus, cin must be higher than 0.606uf. in the application note, 1uf is chosen by considering input impedance vari- ation during the chip fabrication. when using a capacitor which has the po larity, customers must ca refully connect the capacitor. the input dc level of the FAN7033MP is a half of vdd. thus, if the dc level of a source is higher than vdd/2, the positive lead of the capacitor must be face d toward the source. shutdown mode in order to reduce power consumption while not in use, th e FAN7033MP contains a shutdown pin to externally turn- off bias circuitry. this shutdown feature turns the amplifier off when a logic low is placed on the shutdown pin. the trigger point between a logic low and logic high level is typi cally half-supply. it is best to switch between ground and supply to provide maximum device performance. by switching the shutdown pin to vdd , the FAN7033MP supply current draw will be minimized in idle mode. in either case, the shutdown pin should be tied to a definite voltages to avoid unwanted state changes. in many appplications, a microcontroller or microprocessor output is used to control the shutdown circuitry which provides a quick, smooth transition into shutdown. another so lution is to use a single-pole, single-throw switch in conjunction with an external pull-down resistor. when the switch is closed, the shutdown pin is connected to vdd and enables the amplifier. if the switch is open, then th e external pull-down resistor will disable the FAN7033MP. this scheme guarantees that the shutdown pin will no t float thus preventing unwanted state changes. f l 1 2 zin c ?? ---------------------------- - = (2) zin 15k ? 15k ? 90k ? + () || 13.125k ? == (3) cin 1 2 zin f l ?? ---------------------------- - 0.606uf = = (4)
FAN7033MP 17 single-ended input for the case, a source does not provide the fully differen tial signal, the residual input must be well treated. case(a) : for this case, input is left alone without any treatment, that is, input pin is floating. even the pin is float- ing, the btl amplifier works and drives load. however, th is configuration might cause unwanted noise at the output signal. furthemore, floated configuration decreases ps rr(power supply rejection ratio) and increase pop noise. case(b) : case(b) is strongly reco mmended. this configuration increases psrr and decreases pop noise as well. of cource, to get the best perform ance, cinp must be the same value with cinn. thd+n(total harmonic distortion plus noise) thd+n stands for linearity and output noise of the amplif ier as well. the FAN7033MP has the circuit for enhancing thd. in spite of that, to get low thd+ n, users should follow the recommendation: (1) use fully differential input configuration : a fully differential input makes low thd at output. thus, for a single- ended input case, thd+n slightly increaes. (2) do not miss c byp . c byp helps to increase psrr. thus, using this capacitor, it is possible to increase noise immunity from the supply line. (3) do not miss c sup . voltage fluctuation in supply line increases thd. thus, such voltage fluctuation must be reduced to get low thd by connecting this capacitor between all vdd pins and the ground as closely as possible. case (a) : residual input pin floating input 90k ? 90k ? 90k ? 15k ? 15k ? 15k ? 15k ? 90k ? floating c inn outp outn amp1 amp2 vdd/2 case (b) : ac coupling to ground input 90k ? 90k ? 90k ? 15k ? 15k ? 15k ? 15k ? 90k ? c inn c inp outp outn amp1 amp2 vdd/2
FAN7033MP 18 mechanical dimensions package dimensions in millimeters 14mlp
FAN7033MP 19 ordering information device package operating temperature FAN7033MP 14mlp -40c ~ +85c
FAN7033MP 8/20/03 0.0m 001 stock#dsxxxxxxxx ? 2003 fairchild semiconductor corporation life support policy fairchild?s products are not auth orized for use as critical compon ents in life support devices or systems without the express written approval of the pr esident of fairch ild semiconductor corporation. as used herein: 1. life support devices or syst ems are devices or systems which, (a) are intended for surg ical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. a critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause t he failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com disclaimer fairchild semiconductor reserves the right to make changes without further notice to any products herein to improve re liability, function or design. fairchild does not assume any liability arising out of the applic ation or use of any product or circuit described herein; neither does it convey any license under its pat ent rights, nor the rights of others.


▲Up To Search▲   

 
Price & Availability of FAN7033MP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X